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Abstract 
"Complexity:' "self-organization," and "emergence" are terms used extensively in 

Iife-oriGn literature. Yet orecise and auantitative definitions of these tenns are 
L 

sorely lacking. "Emergence at the edge of chaos" invites vivid imagination of 
spontaneous creativity. Unfortunately, the p h s e  lacks scientific substance and 
explanatory mechanism. We explore the meaning, role, and relationship of 
co~nplexity at the edge of chaos along with self-organization We examine their 
relevance to life-origin processes. The high degree of order and panern found m 
'hecessity" (the regularities of nature desnibed by tlme "laws" of physics) @tally 
reduce the uncertainty and infommation retaining potential of spontaneously- 
ordered physical matrices. No asnf-yet undiscovered law. therefore, will be able 
to explain the high infornlation content of even the simplest prescriptive genome. 
Maximum complexity corresponds to mndn~nnes when defined 6onm a 
Kolmogorov perspective. No empirical evidence exists of nndornnes (maximum 
complexity) generating a halting wmpu(ational program. Neither order nor 
complexity is the key to function. Co~nplexity demonstrates no ability lo compute. 
Genetic cybernetics inspired Turing's. von Na~mann's, and Wiener's developn~ent 
of computer science. Genetic cybernetics cannot he explained by the chance and 
neces~ity of physicodynamics. Genetic algorithmic control is fundamentally 
formal, not physical. But like other expressions of lormality, it can be instantiated 
into a physical matrix of retention and channel h.ansmission usmg dynamically- 
inen confiprable switches. Neither parsi~nonicnls law nor cmplexity can 
pmgram the elficacious decision-node logic-gale senings of algorithmic 
organization observed in all known living organisms. 

Dr. David L. Abel is a theoretical biologist focusing on primordial biocybemetics. He 
is the Program Director of The Gene Enmergence Project, an international consortium of 
scientists pursuing the natural-process derivation of initial biocybernetidbiosemiotic 
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By what natural process did inanimate nature generate: 

1. A genetic representational sign/symbol/token system? 
2. Decision nodes and logic gates? 
3. Dynamically-inert (dynamically incoherent) (Rocha, 2001) 

configurable switch settings that instantiate functional "choices" 
into physicality? 

4. A formal operating system, software, and the hardware on which i 
to run it? 

5. An abstract encryptioddecryption system jointly intelligible to 
both source and destination? 

6. Many-to-one Hamming "block codes" (triplet-nucleotide codons 
prescribing each single amino acid) used to reduce the noise 
pollution of genetic messages? 

7. The ability to achieve computational halting in the form of 
homeostatic metabolism? 

j 

The heuristic/operationaI value of using computational and 
linguistic analogies to describe genetic programming is widely accepted. It 
is nevertheless common to dismiss many of the above-listed parallels with 
cybernetics as being merely metaphor. Multiple investigators have taken a 
close look at possible limits to this metaphor (Emmeche and Hoffmeyer, 
1991, Fiumara, 1995, Konopka, 2002, Lackoff and Johnson, 1980, 
Lackoff, 1993, Rosen, 1993, Sarkar, 2003, Torgny, 1997). Others have 
discussed whether semantic information about phenotypic traits actually 
exists (Atlan and Koppel, 1990, Godfrey-Smith, 2003, Griffiths, 2001, ' 
Maynard Smith, 2000, Moss, 2003, Stegmann, 2005, Sterelny ef a/., 1996, 
Wheeler, 2003). Lwoff warned against taking the genetic information and 
linguistic metaphors too far (Lwoff, 1962). Some claim that the metaphor 
is misleading (Godfrey-Smith, 2003, Grifiiths, 2001, Kauffman, 1993, 
Kay, 2000, Keller, 2000, Noble, 2002, Stent, 1981). Rocha (Rocha, 2001, 
Rocha and Hordijk, 2005) fully appreciates Pattee's epistemic cut (Pattee, 
1995b) and the need for semantic closure (Pattee, 1995a). but seeks to 
explain formal self-organization and sign systems physicodynamically. 
Others view genetic information as real (Jamb, 1974), (Alberts et a/, 
2002), (Davidson el a/., 2002), (Wolpert, 2002), (Stegmann, 2005), 
(Barbieri, 2004) and (Abel, 2002, Abel and Trevors, 2005,2006a,b, 2007, 
Abel, 2009). 

None of these bioinformation literalists, however, views genetic 
information as being "everything." Anti-informationists (e.g., 
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 None of these bioinformation literalists, however, views genetic information as 
being “everything.”  Anti-informationists (e.g., infodynamicists) often create this straw-
man argument as justification for denial that any bioinformation exists.  Such factors as 
non-genetic inheritance of cytoplasm and membrane, the role of environment in gene 
expression, epigenetic factors, prions, post-transcriptional and post-translational editing, 
do not undo the reality of objective prescriptive information instantiated into linear digital 
genetic code.   They only compound the sophistication of life’s control mechanisms. 
 
 The first problem with trying to reduce the cybernetic nature of molecular biology 
to mere metaphor is that biological programming predates the very existence of 
metaphors.  Molecular biology provided the model for the entire field of cybernetics.   
Genetic cybernetics inspired Turing’s (Turing, 1936), von Neumann’s (von Neumann, 
1950), and Wiener’s (Wiener, 1948) development of computer science.  Had it not been 
for their observation of linear digital genetic control, computers might never have been 
invented.  The argument is therefore untenable, if not amusing, that computer science 
generated only an analogy applied to molecular biology in the minds of humans.  If 
anything, computer science is analogous to the formal logic of a molecular biology that 
not only preceded, but produced Homo sapiens brains and minds.    
 
What exactly is Complexity? 
 
 Use of the term “complexity” is extensive in life-origin scientific literature.  
Unfortunately, complexity is a garbage-can catch-all term we use to explain everything 
we don’t understand and can’t reduce.  Surprisingly, an unequivocal, pristine, 
mathematical definition of “complexity” does exist in scientific literature (Kolmogorov, 
1965, Li and Vitanyi, 1997).  We achieve quantification of complexity through 
measuring algorithmic compressibility.  When a sequence cannot be compressed, it is 
maximally complex.  Random sequences are maximally complex.  Maximum complexity 
cannot be compressed because it lacks patterns and order (Chaitin, 1990, 2001). 
 
 Charles Bennett’s “logical depth” is also worthy of mention here (Bennett, 1989).  
Logical depth measures the time required for computational halting.  But logical depth 
presupposes many computer science design concepts not relevant to prebiotic molecular 
evolution questions.  We will not be able to elucidate the derivation through natural 
process of initial genetic algorithmic control through a discussion of logical depth.    
 
 The paradox of Kolmogorov/Solomonoff/Chaitin/Yockey algorithmic information 
theory is that orderliness lies at the opposite end of the complexity scale from uncertainty 
and potential information.  Even more paradoxical is that randomness (maximum 
complexity) contains the maximum number of bits of non-compressible “information.”  
The reason this seems so confusing is that Shannon equations do not really quantify 
“information.”  They quantify uncertainty and reduced uncertainty (before and after 
acquired knowledge).  The real purpose of Shannon theory is to compare sequences: the 
one sent by the transmitter vs. the one received at the receiver.   It’s also important for us 
to remember that Shannon quantifications have nothing to do with meaning or function 
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(Shannon, 1948).  Referring to Shannon quantifications using the term “information” 
leads to much confusion.  It displeased Shannon himself.  Shannon  opposed calling his 
theory of communication engineering, “information theory” (Shannon, 1951).  

 
 As the probability of an event approaches 1.0, its order increases, and its Shannon 
uncertainty approaches 0 bits.  A law of physics is a compression algorithm for reams of 
data.  At first glance, the data seem almost random.  The discovery of a law of physics 
corresponds to the discovery of order and patterns of relationship hidden in that data.   

 
 High probability is high order.  A polyadenosine theoretically has maximum 
order, no uncertainty, and therefore no complexity.  Uncertainty and Shannon 
Information are inversely related to order.  The reason laws are so parsimonious is that 
they describe a highly patterned, highly ordered dynamic.  Because law-like behavior is 
so regular, very little information is required to describe the order of inanimate nature.  
Very little information can potentially be retained in any structure produced by natural 
force relationships.  
 
The relationship between order and complexity 
 
 Hubert Yockey has graphically clarified the relationship between order and 
complexity (Yockey, 2002).   The inverse relationship between order and complexity is 
demonstrated on a linear vector progression from high order on the left toward greater 
complexity on the right (Figure 1).   
 
 The arrow point represents theoretical absolute randomness.    How can 
“maximum complexity” possibly equal “randomness”?  The answer is that randomness 
cannot be algorithmically compressed to any degree.  It is therefore maximally complex.  
Maximum complexity is a low-end probability bound approaching 0.  The probability of 
0 is a wall rather than an edge.    No probability can go below 0.  No event of probability 
lower than 0 interfaces with events with 0 probability. 
 
 The relationship between order and Kolmogorov algorithmic complexity is shown 
graphically in Figure 2.  By adding a second dimension (Axis Y1) to the uni-dimensional 
linear vector graph of Yockey, we can visualize the high degree of compressibility for a 
highly ordered sequence like polyadenosine.  Note the low degree of compressibility for a 
random sequence.  Ordered Sequence Complexity (OSC) is on the left.  Maximum order 
means maximum compressibility.   Random Sequence Complexity (RSC) is on the right.   
Random sequences have no compressibility.  No compressibility is maximum 
complexity.  The more highly ordered (patterned) a sequence, the more highly 
compressible that sequence becomes. The less compressible a sequence, the more 
complex is that sequence.  A random sequence manifests no Kolmogorov 
compressibility.  This reality serves as the very definition of a random, highly complex 
string.  Algorithmic compressibility provides a reliable mathematical definition of 
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“complexity.”  The shortest statement of a random sequence is the enumeration of every 
character of the sequence (Chaitin, 1990, 2001, 2002). 
 
Complexity cannot compute 
 
 Although a robust mathematical definition of complexity exists, much to our 
chagrin, complexity has absolutely nothing to do with function.  Yet more often than not, 
we appeal to complexity as an explanation of computational life-origin processes.  
Algorithmic function, primordial biocybernetics, and initial organization are what we are 
hoping to explain.  Mere complexity provides no mechanism for any of these three. 
 
 Computation is formal, not physical.   Both computation and any form of 
algorithmic optimization require efficacious decision-node selections.  When these 
selections are made randomly, computational halting has never been observed to arise.      
Sophisticated algorithmic optimization has never been achieved by chance.  Function 
must be “selected for” at the logic-gate programming level prior to the realization of that 
function.  Selection of fittest function is always after the fact of any computational 
success.  This is called The GS Principle (Genetic Selection Principle) (Abel and Trevors, 
2005, 2006a, b, 2007, Abel, 2009).  Natural selection favors only the fittest already-
computed phenotypes.  Yet selection must occur at the logic-gate level of genetic 
programming. Configurable switches are “set in stone” with rigid covalent bonds before 
folding begins. 
Three-dimensional conformation of molecular machines is largely determined by the 
minimum-free-energy sinks of primary structure folding.  The primary structure of any 
protein or sRNA is the already-covalently-bound sequence of particular monomers that 
serve as configurable switch-settings.     
 
 Maximum complexity is randomness because randomness offers the highest 
degree of combinatorial uncertainty.   But randomness is the equivalent of pure noise.  
Noise has never been observed to program any algorithm.  Adding long periods of time 
provides no mechanism of selection at the decision node level where programming is 
accomplished.  Although a random sequence could happen to match a program sequence, 
outside of a specifically chosen operational context and set of rules, such a matching 
sequence would remain random and nonfunctional.   Thus not only would the random 
sequence itself have to match the program sequence, but the operating system at both 
ends of the channel would also have to match by chance in order for function to arise.           
  
Order cannot compute 
 
 Much life-origin literature appeals to “yet-to-be discovered laws of self-
organization”.   Laws, however, describe highly ordered/patterned behavior.  Because 
they are parsimonious compression algorithms of data, they contain very little 
information.  Given the high information content of life, expecting a new law to explain 
sophisticated genetic algorithmic programming is ill-founded.  Considerable peer-
reviewed published literature is erroneous because of failure to appreciate that the 
‘complexity of life” could never arise from such highly “ordered,” low informational 
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physicodynamic patterning.   Tremendous combinatorial uncertainty is required.  The 
complexity of life will never be explained by the highly ordered behavior that is reducible 
to the low-informational laws of physics and chemistry. 
 
 A crystal is highly ordered.  Its description can be easily algorithmically 
compressed.  A crystal is about as far from being “alive” as any physical state we could 
suggest.  Every member of a 200-monomer string of adenosines can be specifically 
enumerated by stating two short clauses.  “Give me an adenosine.  Repeat 200 times.”  
This is called a compression algorithm.  The simplicity and shortness of this compression 
algorithm is a measure of the extremely low complexity of this polymer.   Such a 
parsimonious statement of the full sequence is only possible because that sequence is so 
highly patterned.  Such a highly ordered sequence lacks uncertainty, complexity, and the 
ability to instantiate prescriptive information.  Such a parsimonious compression 
algorithm can enumerate each and every member of the 200-mer string with only seven 
words.   This reality defines high order or pattern along with low information retaining 
potential.   
 
 We value Ocham’s razor in laws because we realize that physicality is so highly 
ordered. We consider a law to be elegant and beautiful because of its ability to compress 
reams of data down to one little parsimonious equation.  When we look for new laws of 
physics, we look for new compression algorithms for reams of data. 
 
 When we come to biology, however, we encounter not only the highest degree of 
complexity known, we encounter linear, digital, cybernetic, prescriptive information of 
the most sophisticated, abstract, and conceptual nature.  The world’s finest main frame 
parallel computer system cannot hold a candle to the central nervous system of any 
mammal.  
  
 If all four RNA bases were equally available in a theoretical primordial soup, each 
nucleotide selection would represent 2 bits of Shannon uncertainty.  If, on the other hand, 
some bases were more available than others in primordial soup, the uncertainty of each 
nucleotide selection drops to much less than 2 bits.  Unequal availability of bases results 
in more ordering of the sequence.   More ordering  =  less complexity, and therefore less 
information retention potential.  The particular oligoribonucleotide strand would have 
mostly one or two bases with less uncertainty, fewer bits, and therefore less complexity 
than if all four bases were equally available.   
 
 All too many life-origin specialists still operate under the mistaken premise that 
greater complexity contains more order.  In reality, order and complexity are antithetical.  
In addition, neither order nor complexity is the key to function.  Neither order nor 
complexity alone can generate algorithmic organization.  Bona fide organization results 
from algorithmic optimization.  The best solutions to any problem must be selected to 
achieve optimization.   Apart from selection, noise will increase within any system.   A 
tendency toward randomization and loss of function unfolds from noise.  Complexity 
increases while algorithmic optimization decreases.  
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 This latter point exposes the second common illusion, that increasing complexity 
produces increasing algorithmic utility.  In reality, complexity has nothing to do with 
integration, organization, or utility.  Programming requires formal decision-node choice 
commitments made with intent.  Any attempt to disallow choice or intent from the mix 
results in the deterioration of programming function, computational halting, integration, 
and organization. 
 
 In addition to showing the Kolmogorov compression in the second dimension (Y 
axis), Figure 2 also shows the superimposition of a third cybernetic dimension (Z axis), 
Functional Sequence Complexity (FSC).  The Y axis plane plots the decreasing degree of 
algorithmic compressibility as complexity increases from order towards randomness.  
The (Z) axis plane shows where along the same complexity gradient (X-axis) that highly 
instructional sequences and algorithmic programs are generally found.   
 
 The Functional Sequence Complexity (FSC) curve includes all algorithmic 
sequences that work at all (W).  The peak of this curve (w*) represents “what works 
best.”  The FSC curve is usually quite narrow and is located closer to the random end 
than to the ordered end of the complexity scale.  
  
 The third dimension of utility and organization is when each alphabetical token in 
the linear string is selected for meaning or function.   The string becomes a cybernetic 
program capable of computation only when signs/symbols/tokens are chosen to represent 
utilitarian configurable switch settings.  What is the common denominator to all aspects 
of design and engineering function?    Choice contingency;  not chance contingency,  not 
law,  not physicodynamics, but choice contingency.   The FSC curve is usually quite 
narrow and is located closer to the random end than to the ordered end of the complexity 
scale. Compression of an instructive sequence slides the FSC curve towards the right 
(away from order, towards maximum complexity, maximum Shannon uncertainty, and 
seeming randomness) with no loss of function.  This further demonstrates that neither 
order nor complexity is the determinant of algorithmic function.  Functionality arises in a 
third dimension of selection that is unknown to the second dimension of compressibility.  
This is one of most poorly understood realities in life-origin science.  Selection alone 
produces functionality.  Without selection, evolution would be impossible. 
 
 Figure 3 is a dendrogram showing all possible sequences (branches or paths) of 
decision node options.  W paths may show some function, but w* represents the best 
algorithmic path to achieve maximum function.  Notice that each path contains equal (N) 
bits of Shannon uncertainty regardless of whether the path leads to anything useful.  The 
measurement of bits tells us nothing about whether the string does anything useful.  Only 
certain strings of specific choice commitments lead to function and organization.  Neither 
–log2 P nor the formula for Shannon mutual entropy [ ( : ) ( ) ( | )I A B H x H x y= − ] 
measures prescriptive information (Abel and Trevors, 2005, 2006a, b, 2007, Abel, 2009, 
Trevors and Abel, 2004).  Prescriptive information either instructs or directly produces 
sophisticated algorithmic utility.  In addition, no reason exists to think that maximum 
complexity (randomness; noise; maximum uncertainty; maximum bits) has any 
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functional capability in and of itself.   If anything, we expect no function at all out of 
maximum complexity.   
 
All known life is cybernetic 
 
 Any one of four different nucleotides can be added next to a forming nucleic acid 
strand in aqueous solution.  No physicochemical bias exists (Judson, 1993, Monod, 1972, 
Polanyi, 1968) for which nucleotide polymerizes apart from base-pairing of an already 
existing strand, or clay-surface templating.  The latter tends to produce polyadenosines, a 
non-informational sequence because of its extremely high order and extremely low 
uncertainty.  Physicodynamics, therefore, does not explain functional sequencing.  The 
effort that has been invested into genome projects affirms the prescriptive nature of 
nucleotide sequencing.   While not everything, no one can deny that amino acid 
sequencing is determined by triplet codon sequencing.    
 
 Every nucleotide added to an oligoribonucleotide in the pre RNA World 
represents the specific setting of an additional discrete 4-way configurable switch.  The 
appropriate setting of a string of programmable switches alone accounts for 
computational success.  Computational “halting” in the pre RNA World is defined in 
terms of catalytic binding success of three dimensional small RNA’s.  But binding 
success depends upon secondary and tertiary structure.  Secondary and tertiary structure 
in turn depends upon the thermodynamic minimum-free-energy folding sinks of each 
primary structure (Rhoades, et al., 2003).  Primary structure is the sequence of 
nucleotides.  This linear digital sequence of nucleotides is held together by rigid covalent 
bonds.   Covalent bonds are “written in stone” compared to the weak hydrogen bonds, 
van der Waals forces, electrostatic attractions and repulsions, and hydrophobicities that 
contribute to secondary folding.     
 
 Atlan et al attempt to elucidate a mechanism for self-classification and self-
organization in automata networks (Atlan, et al., 1986).  They also explore the notion of 
self-creation of meaning (Atlan, 1987).  Finally they suggest that DNA is data rather than 
program (Atlan and Koppel, 1990).  As with Shannon (Shannon, 1948), 
Kolmogorov(Kolmogorov, 1965), Chaitin (Chaitin, 1987), and Yockey (Yockey, 2005), 
Atlan et al’s concept of information fails to measure up to what we actually observe in 
molecular cybernetics.   The reason is a failure to acknowledge and incorporate the literal 
instructive and controlling role of genetic information.  Linear digital genetic information 
specifically prescribes functional sRNA and protein sequences.  Post transcriptional and 
post translational editing does not undo this reality.  They only add to the sophistication 
of the entire system.  No progress will be made in quantifying semantic information until 
we pursue the unique properties of what Abel has termed prescriptive information (Abel 
and Trevors, 2006a, b, 2007, Abel, 2009) Abel, 2005 #5001; Trevors, 2004 #5544}.  
Prescriptive information is more than just semantic.   It is cybernetic.  Prescriptive 
information alone generates computational halting in the form of homeostatic 
metabolism.  No theory of combinatorial probabilism or compression can explain or 
measure computational success.  Charles Bennett’s logical depth (Bennett, 1988) comes 
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the closest, but presupposes human-designed computer science in a fashion inappropriate 
for prebiotic molecular evolution theory. 
   
 The key to everything that Turing, von Neumann, and Weiner did in inventing 
computers was to recognize that life is made possible because molecular biology uses 
dynamically incoherent, dynamically inert, freely-configurable switches (Rocha, 2000).  
Any of the four ribonucleotides can polymerize next in aqueous solution.  This fact is 
what makes information recordation into the physical matrix of nucleic acid possible.   If 
selection of the next nucleotide were determined by physicodynamic factors, the 
sequence would be too highly ordered and redundant for “messenger molecules” to be 
possible.  Using only four alphabetical characters (four different nucleotides), any 
instructions can be written into DNA. What makes programming possible is that the 
switch is designed to be freely "configurable." Any of the four letters can be chosen 
without physicochemical prejudice.  This means that no law determines which way the 
four-way switch knob is pushed.  
 
 In computer science, only the programmer's mind determines which way the 
switch knob is pushed.  In evolution science we say that environmental selection “favors” 
the fittest small groups.  But selection is still the key factor, not chance and necessity.  If 
physicodynamics set the switches, the switches would either be set randomly by heat 
agitation, or they would be set by force relationships and constants. Neither chance nor 
necessity, nor any combination of the two, can program.  Chance produces only noise and 
junk code. Law would set all of the switches the same way.  Configurable switches must 
be set using "choice with intent" if "computational halting" is expected.   
       
 Nucleic acid can spontaneously form without purpose, such as a polyadenosine 
forming (by physicochemical law) on a montmorillonite clay template surface. But the 
latter is a classic example of all the switches being set the same when law is involved. A 
polyadenosine is nucleic acid, but it can't program anything. It can't relay any 
information, because all of the four-way switches have been set the same way (all 
adenosines) “by law.”  What so many fail to realize is that RNA and DNA are nothing 
but ordinary physical molecules that have the potential of being used for information 
retention only through selection of each nucleotide.  It is the sequencing of particular 
nitrogen base selections that accounts for any information retention in a nucleic acid 
molecule, not the largely inert DNA itself.  Prescriptive information is not 
physicodynamic.  It is formal, though it can be instantiated into a physical medium using 
dynamically inert configurable switches. 
   
 RNA (oligoribonucleotides up to eight monomers, at least) can form 
spontaneously in aqueous solution.   But such strings are "stochastic ensembles" (random 
strings of nucleotides).   As such, they too contain no prescriptive information.   They are 
like linguistic gibberish.    They are “garbage in, garbage out” computer code, pure 
"software bugs."  
 
 A "cybernetic program" presupposes a cybernetic context in which it operates.  
One has to have an operating system of "rules" before one can have an application 
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software.  And of course one must have a hardware system too.  All of these components 
only come into existence through "choice contingency," not through "chance 
contingency" or law.  One of many problems with metaphysical materialism is that it 
acknowledges only two subsets of reality:  chance and necessity.  Neither can write 
operating system rules or application software.  Neither can generate hardware or any 
other kind of sophisticated machinery, including molecular machines (the most 
sophisticated machinery known).   
 
 We see in Figure 2 that complexity as mathematically and scientifically defined is 
blind to function.  Mere complexity cannot generate algorithmic optimization.  Selection 
for fitness is required.  Complexity cannot do this.  Complexity knows nothing of 
selection, fitness, or meaning.  Without selection, evolution is impossible. 
 
The Edge of Chaos 
 
 Physical events “at the edge of chaos” have never been observed to select for 
fitness or binding success.  No mechanism has been demonstrated empirically whereby 
physicodynamics spontaneously generates sophisticated algorithmic optimization or bona 
fide organization.   Switches must be set a certain way to achieve integrated circuits.   
Order can spontaneously emerge from chaos.  But if chaos sets configurable switches, the 
result will predictably “blue screen.”  Without steering towards sophisticated function at 
each decision node, sophisticated function has never been observed to arise 
spontaneously.  Only disorganization accumulates.  No prediction fulfillments have been 
realized of cooperative integration of biofunction arising spontaneously in nature.    
 
 “Emergence at the edge of chaos” is poetic, if not mesmerizing.  The phrase 
invites vivid imagination of mystical powers and ingenious spontaneous creativity.  
Unfortunately, this notion has not provided detailed scientific mechanism to explain the 
efficacious selection of pragmatic configurable switch-settings.  Organization requires 
algorithmic optimization.  The latter requires expedient decision-node commitments that 
are instantiated into specific physical configurable switch-settings.  To explain life origin 
requires elucidating how these particular logic gates were selected at the genetic level. 
Phenotypes must first be computed before the fittest phenotype can be selected.  
No plausible theoretical mechanism and no empirical evidence for emergence exist in the 
literature.   No prediction fulfillment of spontaneous emergence exists.  In every case that 
provides the illusion of spontaneous emergence, investigator involvement can be 
demonstrated in the Materials and Methods section of so-called “evolutionary algorithm” 
papers.   The experimenter’s goal and steering are apparent in faulty experimental 
designs.  This is usually evident in the choice of each successive iteration to pursue.  Real 
evolution has no goal.  Iterations cannot be steered toward experimenters’ goals (e.g., a 
desired ribozyme using SELEX (Ellington and Szostak, 1990, Robertson and Joyce, 
1990, Tuerk and Gold, 1990)).  Quality science requires brutal self-honesty.  We must be 
open-minded enough to consider the possibility that emergence and self-organization are 
closer to metaphysical presuppositions than observed scientific facts.   
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Figure 1:  The inverse relationship between order and complexity is demonstrated on a 
linear vector progression from high order on the left toward greater complexity on the 
right (modified from Hubert Yockey, Fundamentals of Life. Edited by Palyi G, Zucchi C, Caglioti L. Paris: Elsevier; 2002: 335-
348.) Used with permission from:  Abel, David L., and Jack. T. Trevors (2005), "Three subsets of sequence complexity and their 
relevance to biopolymeric information." Theoretical Biology and Medical Modeling 2:29, open access at 
http://www.tbiomed.com/content/22/21/29. 
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Figure 2: 
 
Superimposition of Kolmogorov compression (2nd dimension: Y1 axis) and Functional 
Sequence Complexity (FSC) (3rd dimension: Z axis) onto the single dimension of Figure 
1’s linear vector graph.  The Y1 axis plane plots the decreasing degree of algorithmic 
compressibility as complexity increases from order towards randomness.  The Y2 (Z) 
axis plane shows where along the same order-complexity gradient (X-axis) that highly 
instructional and prescriptive sequences are generally found.  The Functional Sequence 
Complexity (FSC) curve includes all algorithmic sequences that work at all (W).  The 
peak of this curve (w*) represents “what works best.”  Used with permission from:  Abel, David L., and 
Jack. T. Trevors (2005), "Three subsets of sequence complexity and their relevance to biopolymeric information." Theoretical Biology 
and Medical Modeling 2:29, open access at http://www.tbiomed.com/content/22/21/29. 
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Figure 3:  A dendrogram showing all possible sequences (branches or paths) of decision 
node options.  “w*” represents the best algorithmic path to achieve maximum function.  
“W” represents all paths that produce any degree of algorithmic utility.  Notice that all 
paths contain equal (n) bits of Shannon so-called “information” regardless of whether the 
sequence of specific choice commitments accomplishes anything useful.  
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